Genomics Provides Clues for Fertility and Health

Dr. Joseph C. Dalton Professor, University of Idaho Consultant, U.S. Livestock Genetics Export, Inc. jdalton@uidaho.edu • www.uslge.org

lGE

The One Source for Superior Livestock Genetics

About USLGE

- Nonprofit, nationwide trade association (established 1993) with 50 members
- Represents international marketing interests of dairy, beef, sheep, swine, horse, and sheep and goat breeding industries
- Mission: To better serve world markets with superior livestock genetics from leading, progressive U.S. livestock breeders

Bur-Wall Buckeye Gigi EX-94 5E U.S. Record-Holder for Milk Production and 2013 Star of the Breed

Definitions

 Genotype: The genetic constitution of an animal.

Phenotype: Set of observable characteristics.

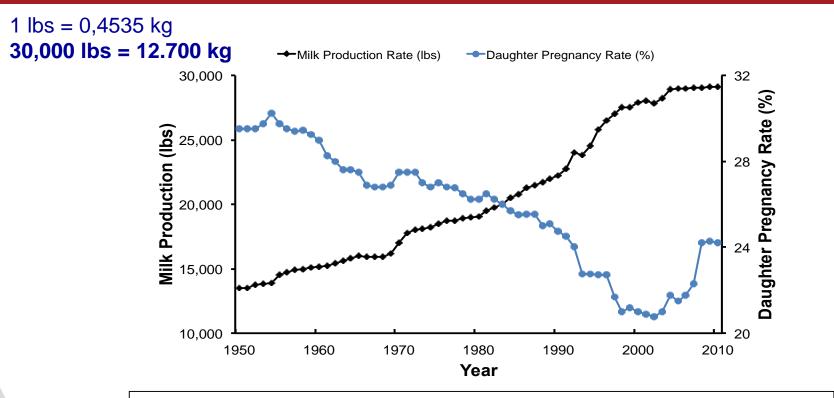
Selz-Pralle Aftershock 3918 365 d 78,170 M 3,094 F 2,393 P

Is genomic testing of cattle popular?

> 3.8 million dairy cattle have been genotyped in the USA

Sources of DNA for Genotyping

- Tissue
- Blood
- Hair
- Semen
- Nasal swab

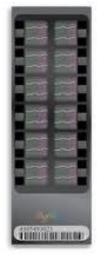


What has been the historical relationship between milk production and fertility?

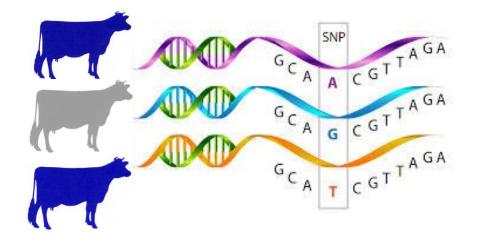
Milk Production and Daughter Pregnancy Rate

DPR is the percentage of a bull's nonpregnant daughters that become pregnant during each 21-day period.

Improving Dairy Cattle Fertility Using Translational Genomics AFRI 2013-68004-20365


T. Spencer, H. Neibergs, J. Dalton, M. Chahine, D. Moore, P. Hansen, J. Cole, and A. De Vries

How do we increase fertility?


Genomic Selection

- Marker-assisted selection (using the whole genome)
- Increased feasibility due to sequencing of bovine genome and new methods to efficiently genotype animals
- Marker discovery requires carefully phenotyped populations

Illumina 777K BovineHD Beadchip

Single Nucleotide Polymorphisms

USDA NIFA AFRI 2013-68004-20365

Objective 1: Develop Novel Markers of Fertility

- Approach: Using records, Holstein heifers and primiparous cows were fertility classified based on pregnancy outcome to AI.
 - Heifers: normal reproductive tract, no record of diseases, and display standing estrus before AI.
 - Cows: normal reproductive tract, uncomplicated pregnancy, no record of diseases before or after AI, and display standing estrus before AI.

Fertility phenotypes:

Highly fertile

Kiser et al. BMC Genomics (2019) 20:576 https://doi.org/10.1186/s12864-019-5935-3

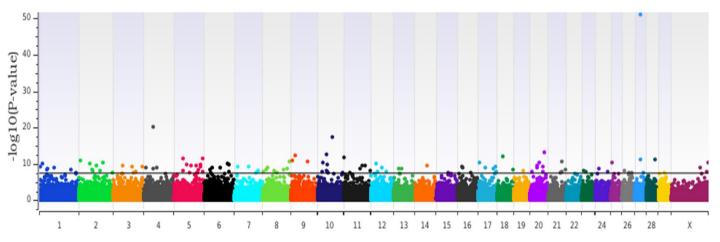
BMC Genomics

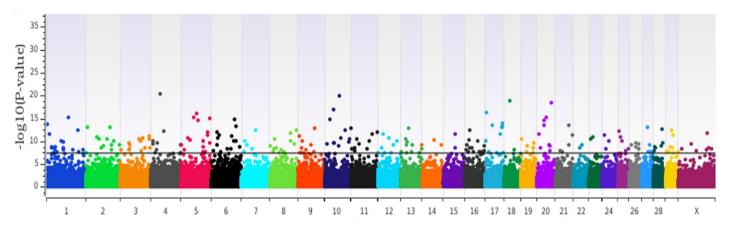
RESEARCH ARTICLE

Open Access

Validation of 46 loci associated with female fertility traits in cattle

Jennifer N. Kiser¹, Elizabeth M. Keuter¹, Christopher M. Seabury², Mahesh Neupane¹, Joao G. N. Moraes³, Joseph Dalton⁴, Gregory W. Burns³, Thomas E. Spencer³ and Holly L. Neibergs^{1*}⁵




Genome-wide Association Analysis of Fertility in Holstein Heifers (HCR1)

- Fertility phenotyped by AI record analysis
 - 468 Highly fertile (pregnant upon first AI)
 - 371 Sub-fertile (did not conceive to first AI)
- 116 loci were associated (P < 5 x 10⁻⁸) with HCR1

Genome-wide Association Analysis of Times Bred to Achieve Pregnancy in Holstein Heifers (TBRD)

- Fertility phenotyped by AI record analysis
 - 468 Highly fertile (pregnant upon first AI)
 - 203 Sub-fertile (pregnant ≥ 4th AI)
- 235 loci were associated (P < 5 x 10⁻⁸) with TBRD

Summary: Heifers


- Number of loci previously associated with fertility:
 - shared with HCR1 and TBRD: 22
 - associated with HCR1 only: 5
 - associated with TBRD only: 19

- Loci previously reported were from Holstein, Angus, Brahman, Brangus, and Jersey.
- There appears to be ample opportunity to make gains in Holstein heifer fertility with genomic selection.

But wait, there's more.....

Jennifer N. Kiser¹, Erin Clancey¹, Joao G. N. Moraes², Joseph Dalton³, Gregory W. Burns², Thomas E. Spencer² and Holly L. Neibergs¹¹

ANIMAL GENETICS Immunogenetics, Molecular Genetics and Functional Genomics

SHORT COMMUNICATION

doi: 10.1111/age.12792

Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows

E. Clancey*, J. N. Kiser*, J. G. N. Moraes[†], J. C. Dalton[‡], T. E. Spencer[†] and H. L. Neibergs*

BMC Genomics

Open Access

Check for updates

Article

Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows

Kayleen F. Oliver ¹, Alexandria M. Wahl ¹, Mataya Dick ¹, Jewel A. Toenges ¹, Jennifer N. Kiser ¹, Justine M. Galliou ¹, Joao G. N. Moraes ², Gregory W. Burns ², Joseph Dalton ³, Thomas E. Spencer ² and Holly L. Neibergs ^{1,*}

USDA NIFA AFRI 2013-68004-20365

Objective 2: Determine Effects of SNPs on DPR

Seagull-Bay Supersire

Pawnee Farm Arlinda Chief

Round Oak Rag Apple Elevation

USDA NIFA AFRI 2013-68004-20365

(Photos courtesy of Select Sires, Inc., and Curtiss Breeding Service)

Daughter Pregnancy Rate

Pregnancy rate of a bull's daughters

A 1% increase in DPR = ~ -4 days open

Welcome Super Petrone-ET (December 2019) +4.9 (-19 days open) Milk +600 lb

USDA NIFA AFRI 2013-68004-20365

Bull Selection (n=550)

Obtained semen from 550 bulls born between 1962 and 2010

High DPR Bulls (>1.7) (n=288)

Low DPR Bulls (<-2) (n=262)</p>

Varying reliabilities (46-99%)

(Courtesy of P.J. Hansen; Cochrane et al., 2013; Photos courtesy of Select Sires, Inc., Genex, ABS Global)

SNPs in Genes Associated with DPR

Bulls: (Cochran et al., 2013)

- 39 SNPs were identified that were related to DPR.
- 29/39 SNPs were not significantly related to production traits. Therefore, selection for fertility without negative selection for milk yield is possible.

Cows: (Ortega et al., 2016)

Of the 39 SNPs found to be related to DPR by Cochran et al. (2013), 19 were significantly related to DPR.

Implications:

SNPs associated with genetic estimates of fertility in Holstein bulls maintained their association in a separate population of cows.

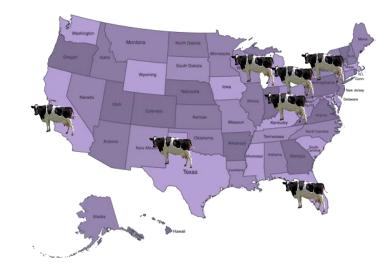
USDA NIFA AFRI 2013-68004-20365

United States National Institute Department of of Food and Aariculture Agriculture

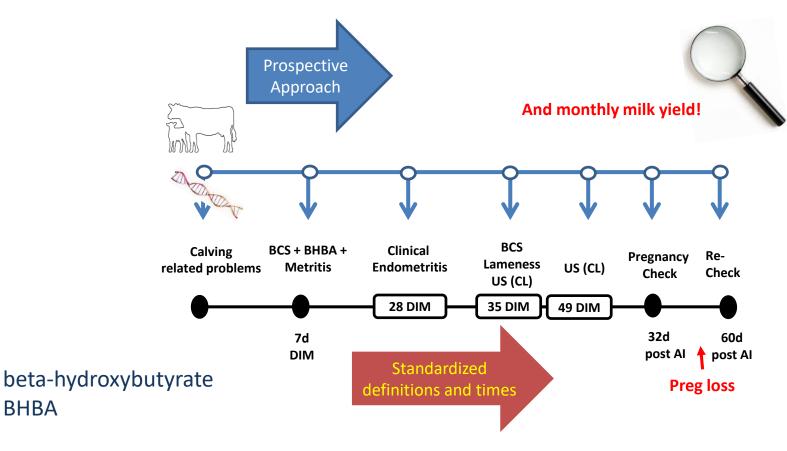
Bicalho RC, Gilbert RO, Schuenemann G, Chebel R, Thatcher W, Rodriguez-Zas S, Fetrow J

Pinedo PJ, Santos JE, Galvao K, Seabury C, Rosa JM,

Colorado

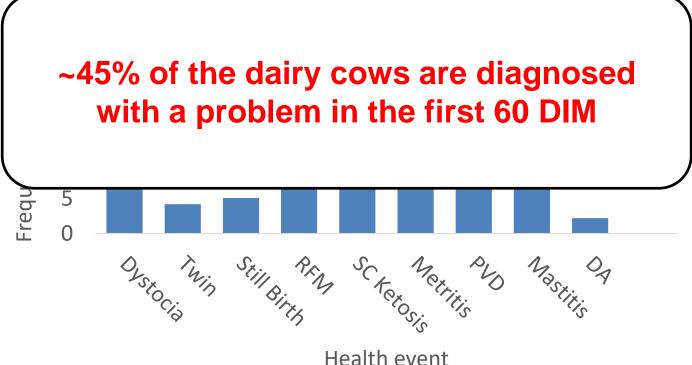


THE UNIVERSITY **ISCONSIN**

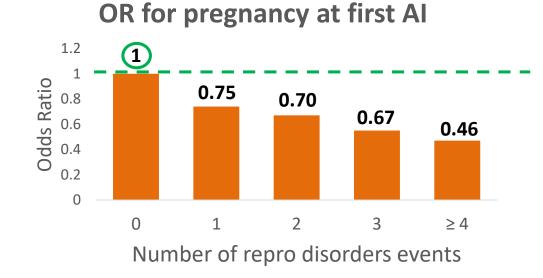

Study Population

- Cows calving from Nov 2012 to Oct 2014
- Warm season: May July
- Cool season: Oct Dec

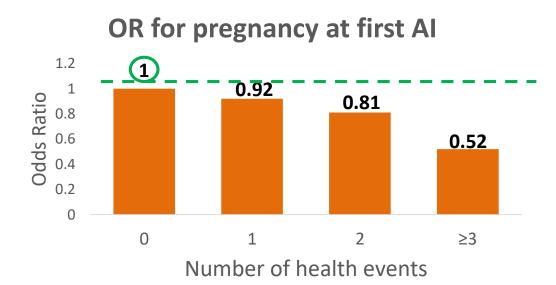
11,733 cows calving in 16 farms located in 4 regions


Monitoring Protocol

USDA NIFA AFRI 2013-02115


BHBA

Frequencies of Health Events


Reproductive Health and Pregnancy

Dystocia, twins, retained fetal membranes, metritis, and clinical endometritis

Other Health and Pregnancy

Subclinical ketosis, mastitis, displaced abomasum, and pneumonia

Genomics, Health, and Fertility

Trait	Heritability
Retained placenta	9%
Metritis	6 - 10%
Clinical Endometritis	10%
Resumption of cyclicity	7 - 35%
Mastitis	5%
Days Open	10 - 14%
Pregnancy 60 d after first AI	11 - 20%
Reproductive index	12%

16 genes on bovine chromosomes 1, 3, 6, 10, 11, 12, 14, 15, 22, and 29 were associated with the traits of interest.

(Pinedo et al., 2018; Brito et al., 2018)

Potential Management Strategies

- Use better AI bulls
- Genomic test
 - Which dairy calves to raise as herd replacements?
 - Health and fertility
 - Which cows (or heifers) to cull?
 - Which animals to breed with sexed semen?
 - Use of beef semen to create crossbred calves?

Food for Thought

- Genomic testing of females can be profitable, depending on:
 - generation of surplus heifers
 - breeding decisions regarding the use of sexed and beef semen
- Better reproduction makes innovative breeding schemes more profitable.
- Seek professional help to implement and monitor management strategies.

Questions?

USDA NIFA AFRI 2013-68004-20365

